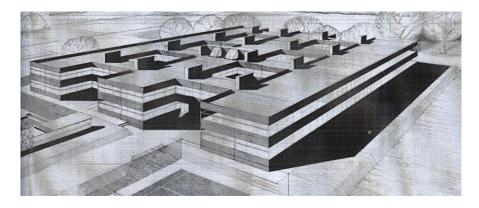
## Low energy retro-fit case study CIT ZERo2020

#### **Fergus Delaney**

Process Energy & Transport Engineering



# Climate KIC Innovator Catalyst 18<sup>th</sup> Oct 2014


#### Agenda



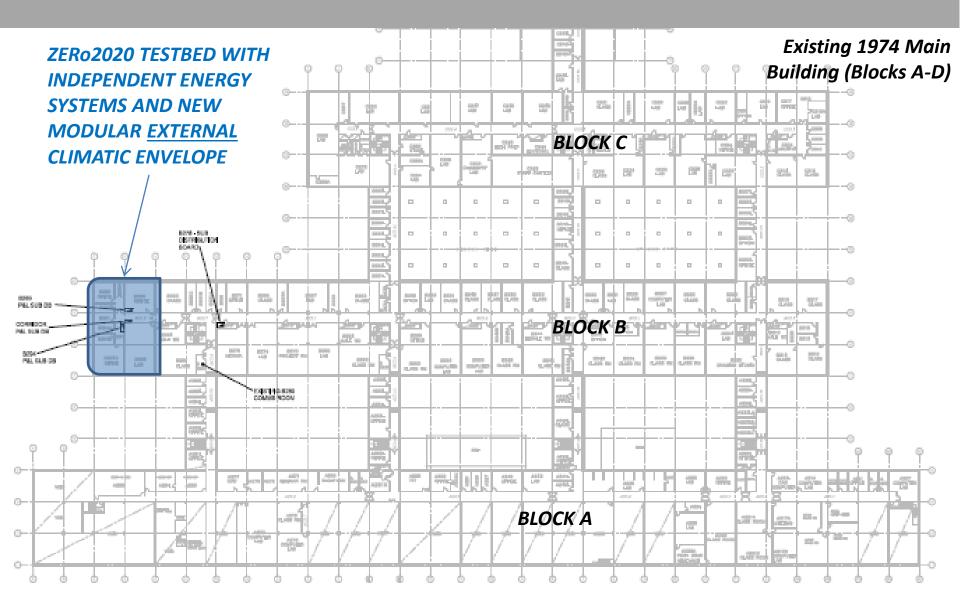
- ZERo2020 overview
- Motivation behind the project
- Project build
- Performance
- Lessons learnt

### ZERo2020 overview

The '**Zero2020' Project** is a project involving extensive refurbishment and upgrade of 3% of an existing 1974 office and teaching space on the Bishopstown Campus of Cork Institute of Technology as a pilot project.






Its mission is to provide a live, monitored testbed environment to explore energy and resource performance through the use of low energy solutions with emphasis on demonstrating nearly zero energy in use operation.

#### ZERo2020 overview

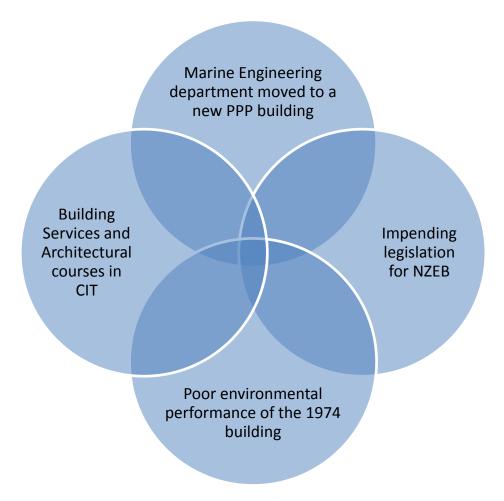




#### Where on campus is the **ZERo2020** Project?



#### Agenda




• ZERO2020 overview

# Motivation behind the project

- Project build
- Performance
- Lessons learnt







Marine Engineering department moved to a new PPP building



National Maritime College of Ireland Coláiste Náisiúnta Mara na hÉireann

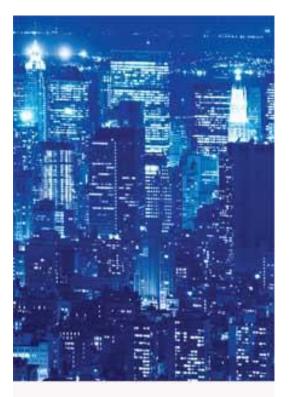






Poor environmental performance of the 1974 building




| Building Energy Rating                                                                                                                                                                          | iSBEM v3.6.b (SBEM v3.5.b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 3ER for the building detailed below is: D2                                                                                                                                                      | The Building Energy Rating (BER) is an indicator of the energy<br>partormasce of this building. It covers energy uses for spaces is effect<br>and cooling, which wishing ventication and lighting calculated on the<br>basis of standard oper tilting patients. It is accomparised by a CO,<br>entersiders infraints: These indicators are expressed on respective<br>ratios of prinsary energy use and CO, enteriors, relative to what<br>works apply for chain to dulting accounty satisfying the Building<br>Regulations 2416. 37 fabric proper to are the noted accorp efficient<br>and will listed for them the lowest energy bits. |  |  |  |
| BER Number: voidvoidvoid<br>Building Type: Further extraction universitie<br>Useful Floor Yana (M): 226<br>Main Heating Fuel: Natural Gas<br>Building Environment Heating and Natural Ventilati | BER Assessor No.: 000000<br>Assessor Company No.: <insert employer="" nu<="" th="" trading=""></insert>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Building Energy Rating<br>(Indicator)<br>MOST EFFICIENT                                                                                                                                         | Carbon Dioxide (CO <sub>2</sub> )<br>Emissions Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| <0.17 A1)<br>0.17 A2)<br>0.34 A3)<br>0.50 B1)<br>0.67 B2)<br>0.84 B3)                                                                                                                           | BEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 0.84 DJ   1.00 C1   1.17 C2   1.34 C3   1.50 D1                                                                                                                                                 | 1.0<br>Calculated<br>arrual Col<br>relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 1.75 D2<br>2.00 E1                                                                                                                                                                              | D2<br>578 kWh/m <sup>2</sup> /yr<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 2.50                                                                                                                                                                                            | F WORST >3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 3.00                                                                                                                                                                                            | G<br>The less CO,<br>produced, the less the<br>building contributes to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |



Building Services and Architectural courses in CIT

Architecture factory CIT



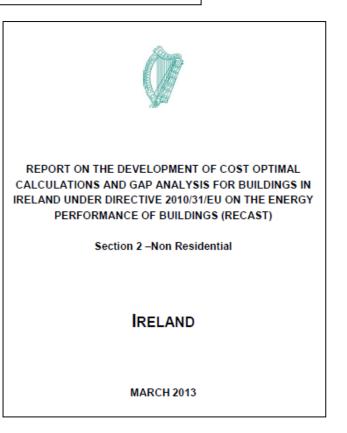


#### BACHELOR OF ENGINEERING IN BUILDING SERVICES ENGINEERING

Course Code CR 072

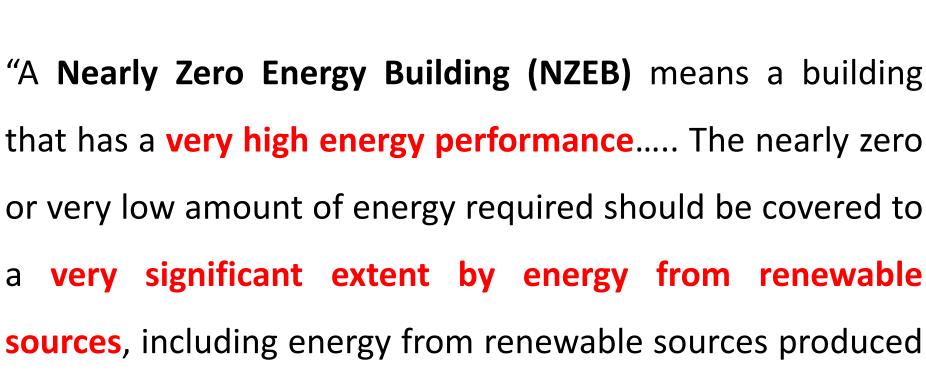





DIRECITVE 2010/31/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 19 May 2010

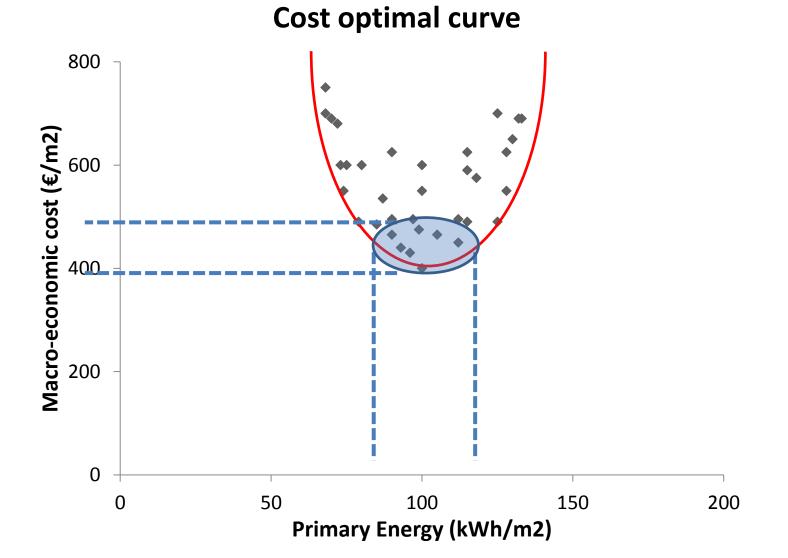
on the energy performance of buildings


(recast)

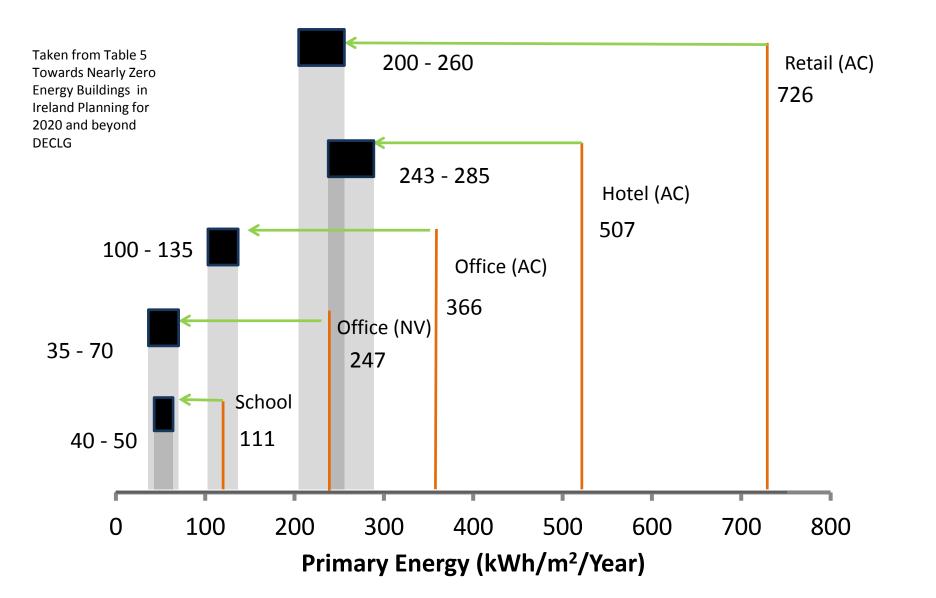
Impending legislation for NZEB



- EPBD Recast
  - 19th May 2010 Recast EPBD came into force
  - Overhaul of 2002 EPBD
- What are key points of Recast EPBD?
  - Broadly defines nearly zero energy buildings
  - Includes general guidance on retrofitted buildings
  - Includes cost optimal methodology for first time







on-site or nearby."

EPBD Recast Article 2 Definitions

#### Project motivation - Cost Optimal Curve



### Cost Optimal NZEB New Build



INSTITUTE OF TECHNOLOGY

# **Cost Optimal NZEB Refurb**

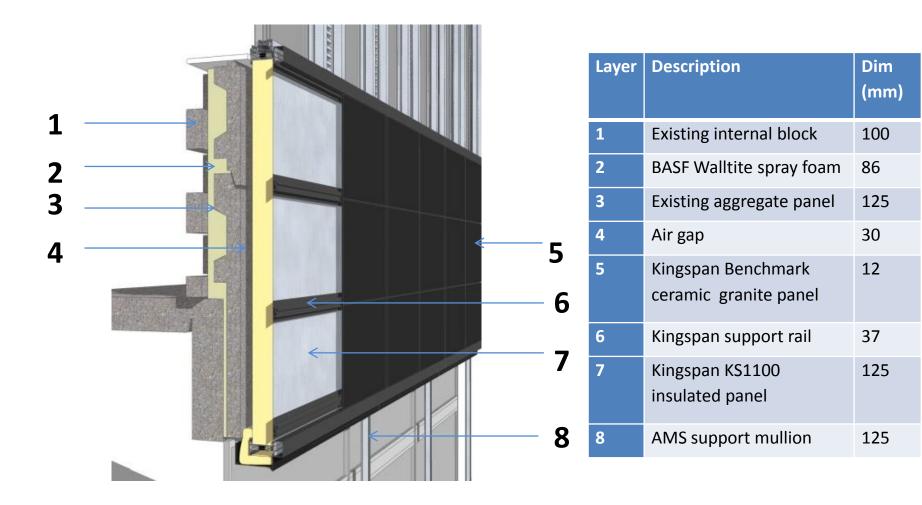


| Option                                        | Cost optimal |
|-----------------------------------------------|--------------|
| Cavity wall U-value                           | 0.3          |
| Other wall U-value                            | 0.2          |
| Roof U-value                                  | 0.17         |
| Floor U-value                                 | 0.12         |
| Window U-value                                | 1.56         |
| Heating                                       | ASHP         |
| Lighting (Im/W)                               | 62           |
| Chiller (SEER)                                | 5.5          |
| AHU SFP (W.I <sup>-1</sup> .s <sup>-1</sup> ) | 1.8          |

Interpreted from Tables 7.2a to 7.2i Cost Optimal calculations and Gap Analysis for recast EPBD for Non-Residential Buildings, DECLG

#### Agenda




- ZERO2020 overview
- Motivation behind the project

- Performance
- Lessons learnt



| Project requirements                      | Solution                                                                                                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Low energy                                | ASHP connected to radiators,<br>quadruple glazing, interstitial<br>blinds, improved air tightness,<br>heavily insulated |
| Naturally ventilated                      | High and low level insulated<br>louvres (Manual & BMS<br>control)                                                       |
| Minimise disruption to existing structure | New envelope wrapped around the existing building                                                                       |
| Cannot dislocate staff/students           | Flat pack off site build                                                                                                |
| Live test bed                             | Heavily instrumented                                                                                                    |

#### Project build - wall detail



INSTITUTE OF

#### Project build - fenestration





Fully integrated factory assembled module

Quadruple glazed unit c/w sealed triple glazed Argon filled system/ manual interstitial blinds / inner clear float pane

Integrated insulated ventilation doors low level occupancy controlled & high level BMS automated


#### Project build - ventilation module

- Free-running indoor temperature as no HVAC system is used
- The envelope achieved an air permeability of 1.76 (m<sup>3</sup>/hr)/m<sup>2</sup> at 50Pa building pressure. The existing structure was measured as 14.77 (m<sup>3</sup>/hr)/m<sup>2</sup>

























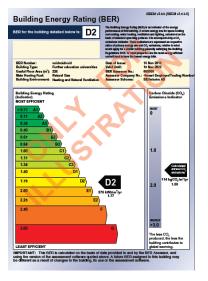






#### Agenda




- ZERO2020 overview
- Motivation behind the project
- Project build

# Performance

Lessons learnt

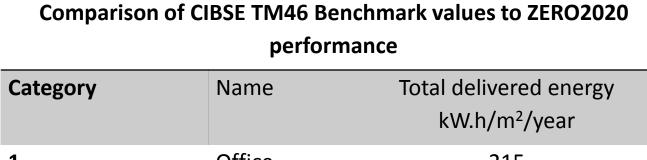
#### Performance - energy












#### Performance - energy



|              | Delivered<br>energy<br>kWh/m²/year | Primary energy<br>kWh/m²/year | CO2<br>kgCO <sub>2</sub> /m <sup>2</sup> /year |
|--------------|------------------------------------|-------------------------------|------------------------------------------------|
| Pre-retrofit | 185.0                              | 325.0                         | 69.2                                           |
| ZERO2020     | 70                                 | 171.5                         | 38.8                                           |

#### Performance - energy



| 1  | Office     | 215                          |
|----|------------|------------------------------|
| 17 | School     | 190                          |
| 18 | University | 320                          |
|    | ZERO2020   | <mark>64<sup>*2</sup></mark> |

\*2 64 kW.h/m<sup>2</sup>/year is based on 2021 degree days in line with CIBSE TM46

#### Performance - structure



#### Refurbished Nat Vent Office EE1

| Option              | Cost optimal *1 | ZERO2020 |  |  |
|---------------------|-----------------|----------|--|--|
| Cavity wall U-value | 0.3             | 0.09     |  |  |
| Roof U-value        | 0.15            | 0.09     |  |  |
| Floor U-value       | 0.10            | NA       |  |  |
| Window U-value      | 1.8             | <1.0     |  |  |
| Heating             | ASHP            | ASHP     |  |  |
| Lighting (lm/W)     | 65              | 48       |  |  |

<sup>\*1</sup> Taken from Tables 7.2a to 7.2i Cost Optimal calculations and Gap Analysis for recast EPBD for Non-Residential Buildings We cannot make a declaration about energy performance in buildings without also making a declaration regarding internal environment and occupant comfort perception

Is the zero2020 internal environment acceptable?

### Performance - Occupant Survey



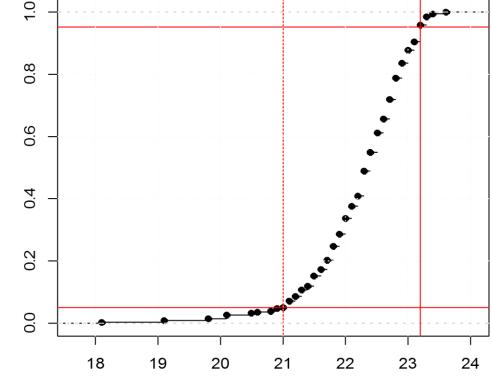
#### How satisfied are you with the temperature in your workspace?

| Very Satisfied | Satisfied | Somewhat satisfied | Neutral | Somewhat<br>dissatisfied | Dissatisfied | Very dissatisfied |
|----------------|-----------|--------------------|---------|--------------------------|--------------|-------------------|
| (+3)           | (+2)      | (+1)               | 0       | (-1)                     | (-2)         | (-3)              |
| <b>66.67</b> % | 22.22%    | 11.11%             | 0%      | 0%                       | 0%           | 0%                |

#### How satisfied are you with the following in the building?

| Environmental Parameter                | Very<br>Satisfied | Satisfied     | Somewhat<br>satisfied | Neutral       | Somewhat<br>dissatisfied | Dissatisfied | Very<br>dissatisfied |
|----------------------------------------|-------------------|---------------|-----------------------|---------------|--------------------------|--------------|----------------------|
|                                        | (+3)              | (+2)          | (+1)                  | 0             | (-1)                     | (-2)         | (-3)                 |
| Visual comfort of the lighting         | 57.14%            | 28.57%        | 0%                    | 14.29%        | 0%                       | 0%           | 0%                   |
| View of external areas                 | 14.29%            | 57.14%        | 14.29%                | 14.29%        | 0%                       | 0%           | 0%                   |
| Noise                                  | 42.86%            | 42.86%        | 14.29%                | 0%            | 0%                       | 0%           | 0%                   |
| Lighting                               | 66.67%            | 16.67%        | 0%                    | 0%            | 16.67%                   | 0%           | 0%                   |
| Humidity                               | 42.86%            | 28.57%        | 0%                    | 28.57%        | 0%                       | 0%           | 0%                   |
| Health (headaches, astma, alergies)    | 28.57%            | 42.86%        | 0%                    | 14.29%        | 14.29%                   | 0%           | 0%                   |
| Comfort                                | 71.43%            | <b>14.29%</b> | 0%                    | <b>14.29%</b> | 0%                       | 0%           | 0%                   |
| Air quality - stuffy/stale air, odours | 42.86%            | 28.57%        | 0%                    | 0%            | 14.29%                   | 14.29%       | 0%                   |

#### Performance - Winter Env. Performance


5 week period 18<sup>th</sup> February to 24<sup>th</sup> March 2013 inclusive

The occupancy schedule 08.00 to 18:00 hours, Monday to Friday inclusive

81% of the time the internal air temperature lies within the 21-23°C comfort range

**13%** of the time the temperature is in the 23 to 23.5°C range, marginally outside the comfort criteria

frequency of occurence



Indoor Air Temp

5 week, occupancy hours Cumulative Frequency Distributions for indoor air temperature (red lines show 95 percentile and 5 percentile values)

#### **Frequency Distribution**

# Performance - IAQ



2000

High air quality, as defined in EN 13779:2007, is achieved 33% of the time and medium air quality 34% of the time

Range of conditions based on 5% confidence intervals is 600 – 1500 ppm. 50<sup>th</sup> percentile value 850ppm

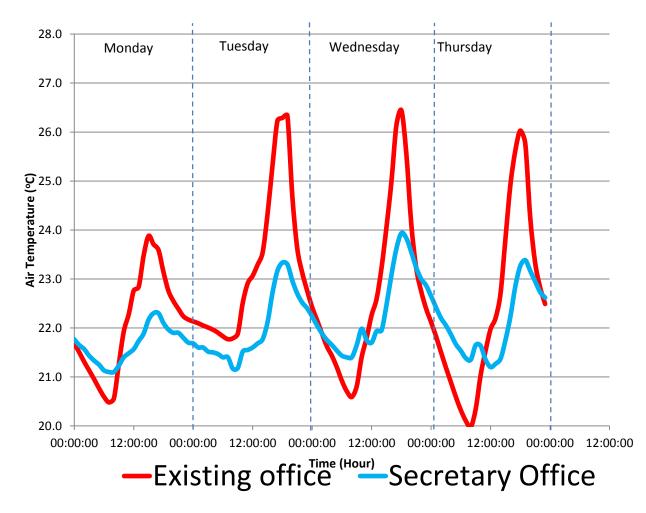
# frequency of occurence

1000

500

**Frequency Distribution** 

enclosed space CO2 ppm


1500

5 week, occupancy hours Cumulative Frequency Distributions for indoor CO<sub>2</sub> ppm (red lines show 95 percentile and 5 percentile values)

# Performance - IAQ



Comparison of room air temperature for existing office and Zero2020 office

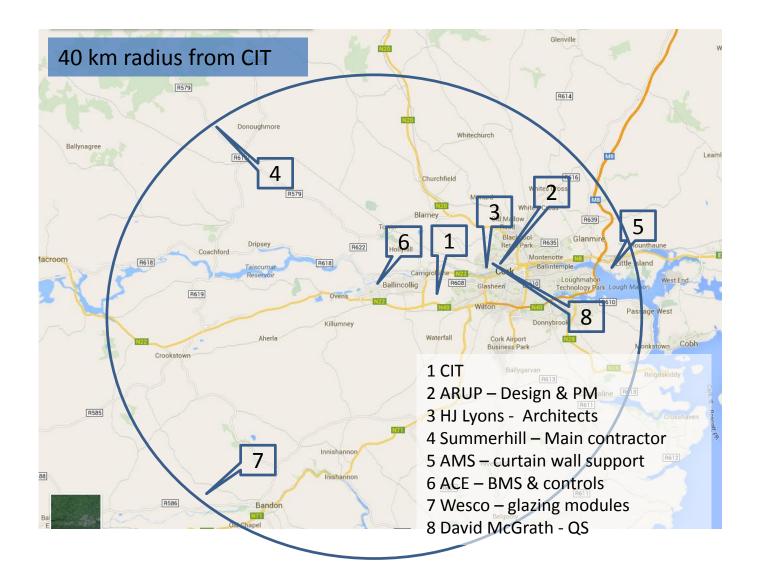


#### CORK INSTITUTE OF TECHNOLOGY

#### **Summary points**

- Substantial variation in temperature distribution between pre and post retrofit spaces
- Peak temperature occurring around the same time in both spaces (no major increase in the time lag with new design)
- Conditions uncomfortable in existing space during the occupied period
- Transient effect on conditions over continuous period of warm days
- Temperatures staying above 20°C at all times in both spaces

# Agenda




- ZERo2020 overview
- Motivation behind the project
- Project build
- Performance

- Project requirement :
  - a low energy building that could support our undergraduate in Building Energy Systems and post graduate research
- Project management
  - Building Services consultant appointed as the project designers and managers to emphasise priority on energy reduction
- Good decision ? YES

- Localisation was critical for problem solving
  - All parties involved were typically within a 40 km radius of the job
    - Design consultant and project managers, ARUP
    - Architect, HJ Lyons
    - Main contractor, Summerhill construction
    - Controls/BMS, ACE
    - QS, Dave McGrath Associates
  - The only exception was Kingspan



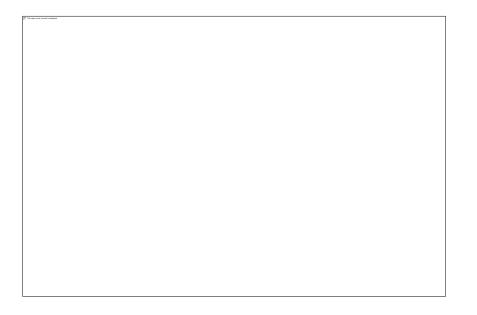


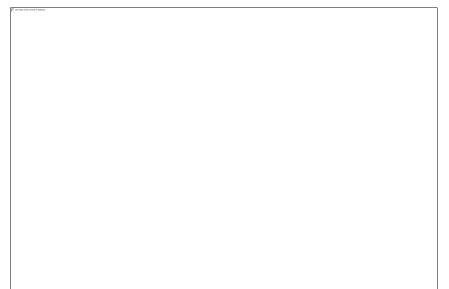
- Industry support
  - Enthusiasm from all stakeholders wrt low energy demonstration projects is vital
    - It pushes the boundaries
    - It challenges standard solutions
    - It produces very good build quality
    - Pride in a finished product is a great selling point



- Natural ventilation under user control will only work with occupant buy-in to the concept
- Lighting control under user control will only work with occupant buy-in to the concept
- Motivation for users wears off with time (can be a very short time in some cases!!!!)
- Positive re-enforcement can have a negative effect! (how do you keep focus on energy reduction before the user gets fed up with reminders?)

- Low carbon low energy is not the primary goal
  - The building must be fit for purpose
  - A low carbon, low energy building with poor user satisfaction is a failure
  - Design around the person first


- Claims of low carbon, low energy, good thermal environment etc are no good without the data to back them up
  - Meter as much as possible
  - Monitor internal environmental conditions in as many places as possible
  - If it is a refurbishment project can you get in and monitor for a significant period pre-refurbishment in order to establish a baseline


CORK INSTITUTE OF TECHNOLOGY

- Warning about monitoring!!!
  - Data needs to be analysed, interpreted and reported
  - This needs to be done for a few years post occupancy
  - If you can't finance this resource then there is no point in data-logging!

# Thank You...Questions?









