nZero.2020 / a Realised retrofit example

Agenda

- 1.Introduction & Motivation
- 2.Specification & Project Build
- 3.Energy performance
- 4.Ventilation Rates
- 5. Overheating Risk
- 6.Thermal comfort evaluation
- 7.What are we learning...

nZero.2020 / Introduction

The '**Zero2020' Project** is a project involving extensive refurbishment and upgrade of 3% of an existing 1974 office and teaching space on the Bishopstown Campus of Cork Institute of Technology as a pilot project.

Its mission is to provide a live, monitored testbed environment to explore energy and resource performance through the use of low energy solutions with emphasis on demonstrating nearly zero energy in use operation.

nZero.2020 / Boundary Definition

nZero.2020 / Boundary Definition

nZero.2020 / Thermophysical Performance

CIT CORK INSTITUTE OF TECHNOLOGY

Component	CIT (1974)	TGDL (2008)	Cost Optimal	Zero2020
Wall U-value (W/m ² K):	2	0.6	0.3	0.09
Roof U-value (W/m ² K):	1.1	0.35	0.15	0.09
Floor U-value (W/m ² K):	0.8	0.8	0.10	0.8
Window U-value (W/m ² K):	>5	2.2	1.8	1

nZero.2020 / Energy Performance

(1974) Primary Energy:

388 kWh/m²/yr

86 kWh/m²/yr

78%

A3

nZero.2020 / Motivation

nZero.2020 / Project Motivation

Marine Engineering department moved to a new PPP building

National Maritime College of Ireland Coláiste Náisiúnta Mara na hÉireann

nZero.2020 / Project Motivation

Poor environmental performance of the 1974 building

Building Energy Rating (BER)	ISBEM v3.0	s.b (SBEM v3.5.b.
VER for the building detailed below is: D2	Is an indicator of the energy wars energy use for space is although tion and lighting, calculated on the an. It is accomparised by a CO, form are suppressed as respective O, entoistorn, relative to what generally activitying the Building Tas are the most accept endicide rary bills.		
BER Number: voidvoidvoid Building Type: Further aducation universities Usaful Floor Area (m): 226 Main Heating Fuel: Natural Cas Building Environment Heating and Natural Ventilation	Date of Issue: Valid Until: BER Assessor No.: Assessor Company No.: Assessor Scheme:	16 Nov 2012 15 Nov 2022 100000 Sel Interim	loyorTrading Nu NS
Building Energy Rating (Indicator) MOST EFFICIENT		Carbon Emissio	Dioxide (CO ₃) ens Indicator
<0.17 A1) 0.17 A2)	90	BEST O	
0.34 A3) 0.50 B1) 0.67 B2)			
0.84 B3) 1.00 C1) 1.17 C2)		1.0	
1.34 C3> 1.50 D1>	Da		Calculated annual Co emissions 114 kgCO,/m²/j
2.00 E1 5	78 kWh/m²/yr	2.0	1.58
2.25 E2	1.//		
2.50	F)	WORST	
3.00	G	>3.0 The less produce	CO, d, the less the
		building	contributes to

Building Services and Architectural courses in CIT

Architecture factory CIT

BACHELOR OF ENGINEERING IN BUILDING SERVICES ENGINEERING

Course Code CR 072

nZero.2020 / Specification

Project requirements	Solution
Low energy	ASHP connected to radiators, quadruple glazing, interstitial blinds, improved air tightness, heavily insulated
Naturally ventilated	High and low level insulated louvres (Manual & BMS control)
Minimise disruption to existing structure	New envelope wrapped around the existing building
Cannot dislocate staff/students	Flat pack off site build
Live test bed	Heavily instrumented

nZero.2020 / Project Build - Roof Detail

• Fully integrated factory assembled module

Quadruple glazed unit c/w sealed triple glazed Argon filled system/ manual interstitial blinds / inner clear float pane

Integrated insulated ventilation doors low level occupancy controlled & high level BMS automated

- Free-running indoor temperature as no HVAC system is used
- The envelope achieved an air permeability of 1.76 (m³/hr)/m² at 50Pa building pressure. The existing structure was measured as 14.77 (m³/hr)/m²

nZero.2020 / Project Build Ventilation Module

CIT CORK INSTITUTE OF TECHNOLOGY

CIT CORK INSTITUTE OF TECHNOLOGY

nZero.2020 / Project Motivation

nZero.2020 / Testbed features

nZero.2020 / testbed features

nZero.2020 / testbed features

wireless Hanwell radio frequency based data logging system

CIT CORK INSTITUTE OF TECHNOLOGY

nZero.2020 / Energy Performance

How does the zero2020 retrofit solution compare with the existing building on an equivalence basis?

Building	Heating (kWh/m²/yr)	Lighting (kWh/m²/yr)	Auxiliary (kWh/m²/yr)	Hot Water (kWh/m²/yr)	Total (kWh/m²/yr)
1974	386.83	46.43	3.24	16.4	452.57
Zero2020	14.25	45.47	1.91	2.51	64.14

A PHPP model has been developed to investigate how the various losses & gains contribute to the reduction in heating demand

PHPP model shows a high solar gain contribution throughout the extended cooling season

2013 Monthly Totalised Energy Consumption per end use

2013 Monthly Totalised Energy Consumption per end use

2013 z2020 Delivered Heating Energy = 13.3 kWh/m^2 annual

2013 PHPP Delivered Heating Energy = 14.7 kWh/m^2 annual

Specific building demands with reference to the treated floor area				use: Monthly method	
	Treated floor area	222.5	m²	Requirements	Fulfilled?*
Space heating	Annual heating demand	14	kWh/(m²a)	25 kWh/(m²a)	yes
	Heating load	25	W/m ²	-	-
Space cooling	Overall specific space cooling demand		kWh/(m²a)	-	-
	Cooling load		W/m ²	-	-
	Frequency of overheating (> 25 °C)	0.0	%	2	-
Primary Energy	Space heating and cooling, dehumidification, household electricity.		kWh/(m²a)	120 kWh/(m²a)	
	DHW, space heating and auxiliary electricity		kWh/(m²a)	-	_
Specific primary energy reduction through solar electricity		0	kWh/(m ² a)	-	-
Airtightness	Pressurization test result n ₅₀	1.6	1/h	1 1/h	no
* empty field: data missing; '-': no requirement					

nZero.2020 / Ventilation Rates

Ζ

Manual & Automated Ventilation Configurations

Ζ

nZero.2020 / Wind & Buoyancy Driven Ventilation

nZero.2020 / Wind & Buoyancy Driven Ventilation

Tracer Gas Concentration Decay Tests investigating measured ventilation rates (pre and post retrofit)

Boxplot distributions of Single Sided ventilation ACH according to configurations

CIT INSTITUTE OF

nZero.2020 / Overheating Risk

% of Total Monthly Hours for Indoor Air Temperature 2013

CORK INSTITUTE OF TECHNOLOGY

Heat map Open Plan office 2013

Heat map Open Plan office 2013

CIT INSTITUTE OF

Heat map > 25°C Open Plan office 2013

Heat map > 28°C Open Plan office 2013

Heat map Open Plan office 2015

CIT CORK INSTITUTE OF TECHNOLOGY

Heat map Open Plan office 2015

CIT CORK INSTITUTE OF TECHNOLOGY

Heat map > 25°C Open Plan office 2015

Heat map > 28°C Open Plan office 2015

Summary Open Plan (All hours) office 2013

Summary Open Plan (All hours) office 2013 & 2015

nZero.2020 / Thermal Comfort

nZero.2020 / Thermal Comfort Evaluation

CIT CORK INSTITUTE OF TECHNOLOGY INSTITUTE OF TECHNOLOGY

ananan gananan THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERTY E 100 100 Ventilative cooling performance in a simulated overheating scenario

nZero.2020 / Thermal Comfort Evaluation

CIT INSTITUTE OF

Test 1

Test 2

Study set up / methodology

Ζ

Manual & Automated Ventilation Configurations

Ζ

nZero.2020 / Thermal Comfort Evaluation

Study set up / methodology

Measured indoor air temperature profiles during thermal comfort tests for each ventilation configuration

Recorded PMV from subjective survey data along with a comparison to the Fanger PMV model

Objective Subjective

What are we learning?

- More data showing people like natural ventilation & openable windows
- PHPP gives realistic predictions for heating energy consumption even within non residential environments
- Surprisingly, so did SBEM for annualised values
- Up to 4 ACH possible with NV SS slot louver systems
- Low energy can mean comfortable but adaptive approach important (free running buildings)
- Overheating still likely even with night cooling
- It is difficult to obtain consistent, accurate measurements over extend periods of time

- Project requirement :
 - a low energy building that could support our undergraduate in Building Energy Systems and post graduate research
- Project management
 - Building Services consultant appointed as the project designers and managers to emphasise priority on energy reduction
- Good decision ? YES

- Localisation was critical for problem solving
 - All parties involved were typically within a 40 km radius of the job
 - Design consultant and project managers, ARUP
 - Architect, HJ Lyons
 - Main contractor, Summerhill construction
 - Controls/BMS, ACE
 - QS, Dave McGrath Associates
 - The only exception was Kingspan

- Industry support
 - Enthusiasm from all stakeholders wrt low energy demonstration projects is vital
 - It pushes the boundaries
 - It challenges standard solutions
 - It produces very good build quality
 - Pride in a finished product is a great selling point

Occupant behaviour

- Natural ventilation under user control will only work with occupant buy-in to the concept
- Lighting control under user control will only work with occupant buy-in to the concept
- Motivation for users wears off with time (can be a very short time in some cases!!!!)
- Positive re-enforcement can have a negative effect! (how do you keep focus on energy reduction before the user gets fed up with reminders?)

- Low carbon low energy is not the primary goal
 - The building must be fit for purpose
 - A low carbon, low energy building with poor user satisfaction is a failure
 - Design around the person first
- Claims of low carbon, low energy, good thermal environment etc are no good without the data to back them up
 - Meter as much as possible
 - Monitor internal environmental conditions in as many places as possible
 - If it is a refurbishment project can you get in and monitor for a significant period pre-refurbishment in order to establish a baseline

- Warning about monitoring!!!
 - Data needs to be analysed, interpreted and reported
 - This needs to be done for a few years post occupancy
 - If you can't finance this resource then there is no point in data-logging!

nZero.2020 / Thank you for listening

Questions?